"Even at low doses, D-leucine ( amino acid) suppressed ongoing seizures at least as effectively as diazepam but without sedative effects. These studies raise the possibility that D-leucine may represent a new class of anti-seizure agents, and that D-leucine may have a previously unknown function in eukaryotes.
In an initial set of experiments, researchers pre-treated mice with the amino acid L-leucine and another one, called D-leucine, which has a nearly identical structure to L-leucine and is essentially its biochemical mirror image.
When researchers induced seizures with shock therapy, animals pre-treated with either amino acid fared better, developing seizures at notably higher electric currents than mice that received placebo, a sign of greater seizure resistance.
To see whether D-leucine and L-leucine could also interrupt ongoing seizures, researchers induced seizures in a group of animals and, once convulsions began, they administered low and high doses of both amino acids. L-leucine failed to abort ongoing seizures, while D-leucine effectively interrupted convulsions. Strikingly, the researchers say, D-leucine terminated seizures even at low doses. Next, researchers compared the ability of D-leucine to terminate prolonged, unrelenting seizures against the sedative diazepam, commonly used stop such seizures in humans. Both treatments terminated seizures, but D-leucine did so about 15 minutes earlier. In addition, mice treated with D-leucine resumed normal behavior faster and experienced none of the drowsiness and sluggishness observed in animals treated with the drug, also common side effects seen in human patients.
A final set of experiments measured D-leucine interaction with several nerve receptors known to be involved in cell-to-cell signaling and seizure activity. Surprisingly, D-leucine interacted with none of the signaling pathways known to spark or avert seizures.
Our results suggest that D-leucine affects neurons differently from other known therapies to control seizures," says senior investigator J. Marie Hardwick, Ph.D., the David Bodian Professor in microbiology and immunology at the Johns Hopkins Bloomberg School of Public Health. "This finding gives us hope of new approaches to epilepsy on the horizon.
Both L-leucine and D-leucine protect mice against seizures."
http://www.ncbi.nlm.nih.gov/pubmed/26054437
http://www.hopkinsmedicine.org/news...entify_amino_acid_that_stops_seizures_in_mice
http://www.amazon.com/BulkSupplements-Pure-L-Leucine-Powder-grams/dp/B00GW5ZHI2/
http://www.amazon.co.uk/gp/product/B00HF61IB2/
In an initial set of experiments, researchers pre-treated mice with the amino acid L-leucine and another one, called D-leucine, which has a nearly identical structure to L-leucine and is essentially its biochemical mirror image.
When researchers induced seizures with shock therapy, animals pre-treated with either amino acid fared better, developing seizures at notably higher electric currents than mice that received placebo, a sign of greater seizure resistance.
To see whether D-leucine and L-leucine could also interrupt ongoing seizures, researchers induced seizures in a group of animals and, once convulsions began, they administered low and high doses of both amino acids. L-leucine failed to abort ongoing seizures, while D-leucine effectively interrupted convulsions. Strikingly, the researchers say, D-leucine terminated seizures even at low doses. Next, researchers compared the ability of D-leucine to terminate prolonged, unrelenting seizures against the sedative diazepam, commonly used stop such seizures in humans. Both treatments terminated seizures, but D-leucine did so about 15 minutes earlier. In addition, mice treated with D-leucine resumed normal behavior faster and experienced none of the drowsiness and sluggishness observed in animals treated with the drug, also common side effects seen in human patients.
A final set of experiments measured D-leucine interaction with several nerve receptors known to be involved in cell-to-cell signaling and seizure activity. Surprisingly, D-leucine interacted with none of the signaling pathways known to spark or avert seizures.
Our results suggest that D-leucine affects neurons differently from other known therapies to control seizures," says senior investigator J. Marie Hardwick, Ph.D., the David Bodian Professor in microbiology and immunology at the Johns Hopkins Bloomberg School of Public Health. "This finding gives us hope of new approaches to epilepsy on the horizon.
Both L-leucine and D-leucine protect mice against seizures."
http://www.ncbi.nlm.nih.gov/pubmed/26054437
http://www.hopkinsmedicine.org/news...entify_amino_acid_that_stops_seizures_in_mice
http://www.amazon.com/BulkSupplements-Pure-L-Leucine-Powder-grams/dp/B00GW5ZHI2/
http://www.amazon.co.uk/gp/product/B00HF61IB2/