Lineage Announces Pipeline Expansion to Include Auditory Neuronal Cell Therapy for Treatment of Hearing Loss
"Hearing loss is a major sensory deficit which affects an enormous number of individuals worldwide, yet current approaches leave much room for improvement. I am pleased to be advising Lineage and providing insights and experience in the launch of this new endeavor and working toward developing cell-based solutions for this condition," stated Stefan Heller, Ph.D., Edward C. and Amy H. Sewall Professor, Stanford University School of Medicine, Department of Otolaryngology – Head & Neck Surgery and Institute for Stem Cell Biology and Regenerative Medicine ISCBRM.
"We are excited to announce this new, internally-developed initiative for Lineage, and to do it so quickly following the partnership we announced with Roche and Genentech for our lead program, OpRegen®, in a deal worth up to $670M USD," added Brian Culley, Lineage CEO. "Many patients with sensorineural hearing loss are poorly addressed, cannot benefit from cochlear implants, and/or have no FDA-approved treatment options. Similar to OpRegen, which has demonstrated to be able to replace and restore retinal pigment epithelium cells in patients with vision loss, and OPC1, which similarly replaces oligodendrocytes for the treatment of spinal cord injury, replacing auditory neurons or augmenting an existing but damaged auditory neuron population may provide a benefit beyond the reach of alternate approaches such as prostheses. We believe auditory neuronal transplants represent a unique opportunity to leverage our knowhow and capabilities in cellular differentiation into a fourth indication with a large unmet need. In addition to the speed with which the team created this new program from our internal technology, we have done so with a modest investment of capital so far, because we were able to take advantage of our established manufacturing infrastructure and broad knowhow in the expansion and differentiation of pluripotent cells. This is another example of the efficiency and versatility of our technology platform, which is gaining broader awareness, and which offers us a favorable competitive position in the emerging fields of regenerative medicine and anti-aging technologies."
Lineage's programs are based on its robust proprietary cell-based therapy platform and associated in-house development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed to either replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineage's clinical programs are in markets with billion dollar opportunities and include four allogeneic ("off-the-shelf") product candidates: (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase 1/2a development for the treatment of dry age-related macular degeneration, which is now being developed under a worldwide collaboration with Roche and Genentech, a member of the Roche Group; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase 1/2a development for the treatment of acute spinal cord injuries; (iii) VAC2, a dendritic cell therapy produced from Lineage's VAC technology platform for immuno-oncology and infectious disease, currently in Phase 1 clinical development for the treatment of non-small cell lung cancer and (iv) ANP1, an auditory neuronal progenitor cell therapy for the potential treatment of auditory neuropathy.
- Expansion of Pipeline Into a Third Neuronal Cell Type Builds on Existing Capabilities
- Intellectual Property Has Been Filed Covering Composition and Methods for Generating Auditory Neuronal Progenitors
- Hearing Loss Afflicts More Than 5% of the Population; More Than 430 Million People
"Hearing loss is a major sensory deficit which affects an enormous number of individuals worldwide, yet current approaches leave much room for improvement. I am pleased to be advising Lineage and providing insights and experience in the launch of this new endeavor and working toward developing cell-based solutions for this condition," stated Stefan Heller, Ph.D., Edward C. and Amy H. Sewall Professor, Stanford University School of Medicine, Department of Otolaryngology – Head & Neck Surgery and Institute for Stem Cell Biology and Regenerative Medicine ISCBRM.
"We are excited to announce this new, internally-developed initiative for Lineage, and to do it so quickly following the partnership we announced with Roche and Genentech for our lead program, OpRegen®, in a deal worth up to $670M USD," added Brian Culley, Lineage CEO. "Many patients with sensorineural hearing loss are poorly addressed, cannot benefit from cochlear implants, and/or have no FDA-approved treatment options. Similar to OpRegen, which has demonstrated to be able to replace and restore retinal pigment epithelium cells in patients with vision loss, and OPC1, which similarly replaces oligodendrocytes for the treatment of spinal cord injury, replacing auditory neurons or augmenting an existing but damaged auditory neuron population may provide a benefit beyond the reach of alternate approaches such as prostheses. We believe auditory neuronal transplants represent a unique opportunity to leverage our knowhow and capabilities in cellular differentiation into a fourth indication with a large unmet need. In addition to the speed with which the team created this new program from our internal technology, we have done so with a modest investment of capital so far, because we were able to take advantage of our established manufacturing infrastructure and broad knowhow in the expansion and differentiation of pluripotent cells. This is another example of the efficiency and versatility of our technology platform, which is gaining broader awareness, and which offers us a favorable competitive position in the emerging fields of regenerative medicine and anti-aging technologies."
Lineage's programs are based on its robust proprietary cell-based therapy platform and associated in-house development and manufacturing capabilities. With this platform Lineage develops and manufactures specialized, terminally differentiated human cells from its pluripotent and progenitor cell starting materials. These differentiated cells are developed to either replace or support cells that are dysfunctional or absent due to degenerative disease or traumatic injury or administered as a means of helping the body mount an effective immune response to cancer. Lineage's clinical programs are in markets with billion dollar opportunities and include four allogeneic ("off-the-shelf") product candidates: (i) OpRegen, a retinal pigment epithelium transplant therapy in Phase 1/2a development for the treatment of dry age-related macular degeneration, which is now being developed under a worldwide collaboration with Roche and Genentech, a member of the Roche Group; (ii) OPC1, an oligodendrocyte progenitor cell therapy in Phase 1/2a development for the treatment of acute spinal cord injuries; (iii) VAC2, a dendritic cell therapy produced from Lineage's VAC technology platform for immuno-oncology and infectious disease, currently in Phase 1 clinical development for the treatment of non-small cell lung cancer and (iv) ANP1, an auditory neuronal progenitor cell therapy for the potential treatment of auditory neuropathy.