Using Extracochlear Multichannel Electrical Stimulation to Relieve Tinnitus and Reverse Tinnitus-Related Auditory-Somatosensory Plasticity in the Cochlear Nucleus
Next steps Phase 1 and 2. More and more treatment routes are popping up everyday. I'm confident it is not a matter of decades but a matter of years until we get out of this trouble.
Objectives
Tinnitus has no reliable cure but may be significantly relieved by the usage of cochlear implants. However, not all tinnitus patients necessitate cochlear implantation that can impair hearing. This study was to investigate whether a novel extracochlear electrical stimulation (EES) strategy could relieve tinnitus of guinea pigs without hearing impairment, and the roles of auditory-somatosensory plasticity in the cochlear nucleus in the tinnitus relief.
Materials and Methods
We used a novel four-electrode extracochlear implant to electrically stimulate the cochlea of tinnitus guinea pigs. Tinnitus was assessed by the gap-prepulse inhibition of the acoustic startle reflex (GPIAS) ratios and the tinnitus index. The plasticity of auditory and somatosensory innervation in the different subdivisions of cochlear nucleus was evaluated by immunostaining of vesicular glutamate transporter 1 (VGLUT1) and VGLUT2, respectively.
Results
The EES induced significant decreases of GPIAS ratios and the tinnitus index of tinnitus guinea pigs, indicating reductions of tinnitus behavioral manifestations. Meanwhile, the EES reversed the abnormal auditory-somatosensory innervation in the cochlear nucleus of tinnitus animals but did not change the hearing and the numbers of inner hair cell synapses.
Conclusions
This study demonstrated that the novel EES strategy could effectively relieve tinnitus without impairment to hearing and cochlear structure of tinnitus animals. The reversal of tinnitus-related auditory-somatosensory plasticity in the cochlear nucleus was correlated with the tinnitus relief induced by the EES.
Tinnitus has no reliable cure but may be significantly relieved by the usage of cochlear implants. However, not all tinnitus patients necessitate cochlear implantation that can impair hearing. This study was to investigate whether a novel extracochlear electrical stimulation (EES) strategy could relieve tinnitus of guinea pigs without hearing impairment, and the roles of auditory-somatosensory plasticity in the cochlear nucleus in the tinnitus relief.
Materials and Methods
We used a novel four-electrode extracochlear implant to electrically stimulate the cochlea of tinnitus guinea pigs. Tinnitus was assessed by the gap-prepulse inhibition of the acoustic startle reflex (GPIAS) ratios and the tinnitus index. The plasticity of auditory and somatosensory innervation in the different subdivisions of cochlear nucleus was evaluated by immunostaining of vesicular glutamate transporter 1 (VGLUT1) and VGLUT2, respectively.
Results
The EES induced significant decreases of GPIAS ratios and the tinnitus index of tinnitus guinea pigs, indicating reductions of tinnitus behavioral manifestations. Meanwhile, the EES reversed the abnormal auditory-somatosensory innervation in the cochlear nucleus of tinnitus animals but did not change the hearing and the numbers of inner hair cell synapses.
Conclusions
This study demonstrated that the novel EES strategy could effectively relieve tinnitus without impairment to hearing and cochlear structure of tinnitus animals. The reversal of tinnitus-related auditory-somatosensory plasticity in the cochlear nucleus was correlated with the tinnitus relief induced by the EES.
Next steps Phase 1 and 2. More and more treatment routes are popping up everyday. I'm confident it is not a matter of decades but a matter of years until we get out of this trouble.