Hearing loss represents an epidemic that affects approximately 16% of the population in Europe and the US (Goldman and Holme, 2010, Drug Discovery Today 15, 253-255), with a prevalence estimated at 250 million people worldwide (B. Shield, 2006, Evaluation of the social and economic costs of hearing impairment. A report for Hear-lt AISBL:
www.hear- it.org/multimedia/Hear_lt_Report_October_2006.pdf). As life expectancy continues to increase, so too will the number of people suffering from hearing disorders. Furthermore, it is believed that modern lifestyles may exacerbate this burden as the younger generation ages. Hearing conditions, including tinnitus have a profound effect on the quality of life, causing social isolation, depression, work and relationship difficulties, low self-esteem, and prejudice. Voltage-gated ion channels of the Kv3 family are expressed at high levels in auditory brainstem nuclei (Li et al., 2001, J. Comp. Neurol. 437, 196-218) where they permit the fast firing of neurons that transmit auditory information from the cochlear to higher brain regions. Loss of Kv3.1 channel expression in central auditory neurons is observed in hearing impaired mice (von Hehn et al., 2004, J. Neurosci. 24, 1936-1940), and a decline in Kv3.1 expression may be associated with loss of hearing in aged mice (Jung et al. 2005 Neurol. Res. 27, 436-440). Furthermore, pathological plasticity of auditory brainstem networks is likely to contribute to symptoms that are experienced by many people suffering from hearing loss of different types. Recent studies have shown that regulation of Kv3.1 channel function and expression has a major role in controlling auditory neuron excitability (Kaczmarek et al., 2005, Hearing Res. 206, 133-145), suggesting that this mechanism could account for some of the plastic changes that give rise to tinnitus. More specifically, a reduction in Kv3- like potassium currents in neurons of the dorsal cochlear nucleus has now been observed following acoustic trauma in rats, suggesting that reduced Kv3 function could contribute to the pathological process that is triggered by damaging noise (Pilati et al., 2011, Hearing Res., doi:
10.1016/j.hearingres.2011.10.008), and supporting the hypothesis that positive modulation of Kv3 channels in auditory brainstem nuclei could have a therapeutic benefit in patients suffering from noise- induced hearing loss. Finally, Fraglie X syndrome and autism are frequently associated with
hypersensitivity to sensory input, including auditory stimuli. Recent findings suggest that the protein coded by the FMR-I gene, whose mutation or absence gives rise to Fragile X syndrome, may directly regulate the expression of Kv3.1 channels in the auditory brainstem nuclei (Strumbos et al., 2010, J.Neuroscience, in press), suggesting that mis-regulation of Kv3.1 channels could give rise to hyperacusis in patients suffering from Fragile X or autism. Consequently, we propose that small molecule modulators of Kv3 channels in auditory brainstem nuclei could have a benefit in the treatment of disorders of hearing, including tinnitus and auditory hyper-acuity associated with Fragile X syndrome and autism.